
JIMMY MESTA Secure Coding Instructor www.manicode.com

JIMMY MESTA Secure Coding Instructor www.manicode.com

Securing Vintage Blackberry and Windows Phones

JIMMY MESTA Secure Coding Instructor www.manicode.com

Mobile is Eating the World
But is it Secure?

COPYRIGHT ©2018 MANICODE SECURITY

A little background dirt…

@jimmesta

§ CTO @ Manicode Security
§ 10 years of penetration testing, teaching, and

building security programs
§ OWASP AppSec California organizer and

Santa Barbara chapter founder

§ Conference speaker
§ Been on both sides of the InfoSec fence

§ Lives in The Cloud

4

COPYRIGHT ©2018 MANICODE SECURITY 5

WARNING: Please do not attempt to hack any
computer system without legal permission to do so.
Unauthorized computer hacking is illegal and can
be punishable by a range of penalties including
loss of job, monetary fines and possible imprisonment.

ALSO: The Free and Open Source Software presented in these materials are
examples of good secure development techniques. You may have unknown
legal, licensing or technical issues when making use of Free and Open Source
Software. You should consult your company's policy on the use of Free and Open
Source Software before making use of any software referenced in this material.

COPYRIGHT ©2018 MANICODE SECURITY 6

OWASP Mobile Top Ten (Wall of Shame)

iOS and Android Architecture

iOS and Android Attack Surface

iOS and Android Application Anatomy

COPYRIGHT ©2018 MANICODE SECURITY 7

COPYRIGHT ©2018 MANICODE SECURITY 8

COPYRIGHT ©2018 MANICODE SECURITY 9

COPYRIGHT ©2018 MANICODE SECURITY 10

Mobile Attack Surface

Device Network Backend

COPYRIGHT ©2018 MANICODE SECURITY 11

Mobile Attack Surface

Device
System Configuration
- Jailbroken/Rooted
- Poor Passcode
- Supply Chain Issues
Applications
- Injection
- Data Storage
- Secret Storage
- Poor Encryption
- Permission Issues
- Escalated Privileges
- Malware
- Third-Party Libs
Mobile Browser
- Classic App Vulns
- Man-in-the-Middle
Phone/SMS
- SMShing
- 2FA Attacks

Network
- DNS Spoofing
- Rogue Access Point
- SSL Strip
- Network Sniffing
- Insecure Network
- Session Hi-Jacking
- Nation State Attacks

Backend
Web Server / API
- Classic App Vulns
- Brute Force
- Vulnerable Libraries
- Server

Misconfigurations
- XSS
- CSRF
- Access Control
- Insecure API
- Cloud

Misconfigurations
- Broken

Authentication
DB
- SQLi
- Unauthorized Data

Access
- Encryption

COPYRIGHT ©2018 MANICODE SECURITY 12

Mobile Attack Surface

COPYRIGHT ©2018 MANICODE SECURITY 13

I Can Haz Your Traffic

I Can Haz Your Code

I Can Haz Your Device

COPYRIGHT ©2018 MANICODE SECURITY

OWASP Mobile Top Ten

14

COPYRIGHT ©2018 MANICODE SECURITY

Mobile Top Ten 2016

15

Improper Platform Usage
M1

Insecure Data Storage
M2

Insecure Communication
M3

Insecure Authentication
M4

Insufficient Cryptography
M5

Insecure Authorization
M6

Client Code Quality
M7

Code Tampering
M8

Reverse Engineering
M9

Extraneous Functionality
M10

COPYRIGHT ©2018 MANICODE SECURITY 16

Covers the misuse or lack of a platform
feature security control contained within the
mobile OS. Issues range from using Local
Storage instead of Keychain for sensitive
data to misconfigured Android intents.

Improper Platform UsageM1

COPYRIGHT ©2018 MANICODE SECURITY 17

Improper Platform UsageM1

COPYRIGHT ©2018 MANICODE SECURITY 18

Improper Platform UsageM1

COPYRIGHT ©2018 MANICODE SECURITY 19

Improper Platform UsageM1

WhatsApp for Android stores conversations on the phone’s SD card, which is
accessible by many other apps on the phone as long as the user gives those
apps the permissions they ask for…

COPYRIGHT ©2018 MANICODE SECURITY 20

Occurs when vulnerabilities expose or leak
data in an unintended manner. This may
include log files, databases, cloud synced
storage, and manifest files.

Insecure Data StorageM2

COPYRIGHT ©2018 MANICODE SECURITY 21

COPYRIGHT ©2018 MANICODE SECURITY 22

This category applies to poor or
non-existent encryption mechanisms
for data in motion.

Insecure CommunicationM3

COPYRIGHT ©2018 MANICODE SECURITY

In July 2016 researchers at

Rapid 7 discovered the

Seeking Alpha financial

news app leaking

usernames, passwords,

stock selections and HTTP

cookies in plaintext.

Source: Rapid 7 Blog

23

Insecure CommunicationM3

COPYRIGHT ©2018 MANICODE SECURITY 24

Insecure CommunicationM3

COPYRIGHT ©2018 MANICODE SECURITY 25

Insecure CommunicationM3

“He found shocking results: Though

Equifax’s app used the secure HTTPS

protocol to authenticate, once users
were in the app, it used just HTTP in
a number of locations, which makes

the app vulnerable to interception. This

means that any data communicated

between users and Equifax is not

encrypted.”

COPYRIGHT ©2018 MANICODE SECURITY 26

Insecure CommunicationM3

TinyCards loads a website via webview when starting, but that site is loaded
over http then redirected to https. An MITM attack that controls either the
network or the DNS, can inject their own web content into the webview. You
can confirm this by using an MITM proxy to capture the traffic. Included you
will find a screenshot from the proxy and the Java application file that has
the incorrect URL.

COPYRIGHT ©2018 MANICODE SECURITY 27

Applies to weaknesses around identifying
a user and maintaining the integrity of that
user’s identity throughout a session.

Insecure AuthenticationM4

COPYRIGHT ©2018 MANICODE SECURITY 28

Insecure AuthenticationM4

COPYRIGHT ©2018 MANICODE SECURITY 29

Insecure AuthenticationM4

COPYRIGHT ©2018 MANICODE SECURITY 30

Insecure AuthenticationM4

COPYRIGHT ©2018 MANICODE SECURITY 31

The mechanism used to encrypt and
decrypt sensitive data is flawed and may
allow an adversary to access the data.

Insecure CryptographyM5

COPYRIGHT ©2018 MANICODE SECURITY 32

Refers to the failure of a mobile applications
ability to properly enforce identity and
access permissions.

Insecure AuthorizationM6

COPYRIGHT ©2014 MANICODE SECURITY 33

COPYRIGHT ©2018 MANICODE SECURITY 34

Risks that occur from code-level
vulnerabilities executing on the mobile
device. Common vulnerabilities include buffer
overflows or format string issues.

Client Code QualityM7

COPYRIGHT ©2018 MANICODE SECURITY 35

Malicious modification of a mobile
applications codebase which allows
attackers to abuse the applications
functionality or even publish an entirely
new malicious version of the application.

Code TamperingM8

COPYRIGHT ©2018 MANICODE SECURITY

§ PokemonGO was cloned
maliciously soon after release

§ Found in Google Play store
§ App ran in the background and

generated fake add clicks

36

Code TamperingM8

COPYRIGHT ©2018 MANICODE SECURITY 37

Code TamperingM8

COPYRIGHT ©2018 MANICODE SECURITY 38

The analysis of a executable binary in its
delivered state to determine the applications
source code, proprietary algorithms, libraries,
and more.

Reverse EngineeringM9

COPYRIGHT ©2018 MANICODE SECURITY

§ Popular dating app, Tinder, was
reverse engineered to receive
premium services for free.

§ While the majority of everyday
users do not have the skillset to do
this, it is still a problem. Especially
for expensive subscription
applications.

Source: Forbes

39

Reverse EngineeringM9

http://www.forbes.com/sites/thomasbrewster/2016/02/09/tinder-bad-security-design

COPYRIGHT ©2018 MANICODE SECURITY 40

Occurs when an attacker discovers features
or security controls that were not intended to
be released into a production environment.

Extraneous FunctionalityM10

COPYRIGHT ©2018 MANICODE SECURITY 41

COPYRIGHT ©2018 MANICODE SECURITY

iOS Architecture

42

COPYRIGHT ©2018 MANICODE SECURITY 43

§ Mobile OS built to run on a variety
of Apple devices

§ End-to-end ownership model for
hardware and software

§ Mobile Operator software is not permitted

§ Closed-source and proprietary licensing

§ Developers build applications using
either Objective-C or Swift programming
languages

§ Lacks removable storage

Apple iOS

COPYRIGHT ©2018 MANICODE SECURITY 44

§ Apple takes a number of precautions to protect
against the misuse of software on their devices

§ Use of code signing and signature validation
from boot to application execution

§ Jailbreaking takes advantage of a flaw in one of
these steps

iOS Operating System Security

BootROM Bootloader iBoot

Kernel Applications

Signature
Validation

Signature
Validation

Signature
Validation

Signature
Validation

COPYRIGHT ©2018 MANICODE SECURITY 45

§ Data Execution Protection (DEP) where
memory is either writable or executable, but
never both

§ Address Space Layout Randomization (ASLR)
allows executables and libraries on iOS to be
compiled with randomized memory addresses
at startup

§ Combination of the two can mitigate certain
classes of vulnerabilities but does not mean
absolute security

Data Execution Protection & ASLR

COPYRIGHT ©2018 MANICODE SECURITY

iOS sandboxing only
allows each app to
access its own files,
preferences, and network
resources through
sanctioned iOS APIs

46

COPYRIGHT ©2018 MANICODE SECURITY 47

§ App Transport Security (ATS) now requires all
apps use HTTPS with TLS 1.2 for network
transport through NSURLSession and
NSURLConnections

Exceptions for transmission of bulk encrypted streaming
media

iOS App Transport Security

Don’t try this at home…

COPYRIGHT ©2018 MANICODE SECURITY 48

§ Developers build, sign, and submit applications
for validation by Apple through Xcode using a
Apple-issued developer certificate

§ Apple reviews and verifies all submitted
applications in-house and rejects those which
do not follow Apple policies

§ Once an application is approved, it is signed
using an Apple private key and distributed to
the App Store

§ All applications must have valid signatures
before installation

§ We have some assurance that an app
downloaded on a non-jailbroken device is
mostly free of malware

iOS Application Signing
and Distribution

COPYRIGHT ©2018 MANICODE SECURITY 49

https://support.apple.com/en-al/HT209106

iOS Security Issues – Still a Thing!

https://support.apple.com/en-al/HT209106

COPYRIGHT ©2018 MANICODE SECURITY 50

§ Sandboxing prevents apps from interacting
other than via permitted APIs

§ iOS exposes minimal privilege notices to users
Contacts

Reminders

Calendar

Bluetooth

Microphone

...

§ Many other privileges are available to
developers via APIs

iOS Permissions and Privileges

COPYRIGHT ©2018 MANICODE SECURITY 51

IPC is what allows applications to communicate
with each other

In order to protect users and the integrity of the
platform, Apple has a limited number of ways to
perform IPC

§ URL Schemes

§ Universal Links

§ Pasteboards

§ App Extensions

§ ...

iOS Inter-Process Communication

COPYRIGHT ©2018 MANICODE SECURITY 52

§ URL Schemes allow one app to be opened by
another app through the use of a custom,
registered URL
(manicode://search?course=toaster security)

§ Defined by the developer in the info.plist file

§ Apple does reserve some system schemes that
can’t be used by third-party apps

iOS IPC (URL Schemes)

COPYRIGHT ©2018 MANICODE SECURITY 53

§ Apple does not enforce the unique naming
meaning that two completely different apps may
use an identical URL Scheme

§ The security company, FireEye observed over
28 App Store apps all registering the URL
scheme “fb://” of which 16 did not belong to
Facebook

§ A published malicious app that registers an
identical URL scheme in hopes of intercepting a
legitimate request to that app

iOS Masque Attack: Bypassing Apple’s Prompt
https://www.youtube.com/watch?v=Q1d70kCy6VQ

iOS IPC (URL Schemes)

COPYRIGHT ©2018 MANICODE SECURITY 54

iOS IPC (URL Schemes)

COPYRIGHT ©2018 MANICODE SECURITY 55

§ Universal links address the shortcoming
introduced by URL Schemes

§ Can not be claimed by other apps because
they use standard HTTPS links to your own
domain

§ A file is verified on your web server to make
sure you are the owner

§ One URL for your website and app

iOS IPC (Universal Links)

https://www.manicode.com/search?toaster security

COPYRIGHT ©2018 MANICODE SECURITY 56

§ The `UIPasteboard` can be considered a crude
form of IPC

§ An example would be transferring a user’s data
from a free version of an app to the paid
version - not a great idea!

§ The general pasteboard is shared among all
applications installed on the device making it a
particularly bad place to store private data

§ iOS 10 introduced Pasteboard Handoff which
allows pasteboard data to be shared between
devices

iOS IPC (Pasteboards)

COPYRIGHT ©2018 MANICODE SECURITY 57

§ Application Extensions allow
developers to present data
to other applications and
share data through your app

§ More secure alternative to
custom URL Schemes

§ Extensions are not invoked
from within an app directly -
the user must select the
action from within the
application

iOS IPC (App Extensions)

COPYRIGHT ©2018 MANICODE SECURITY 58

Share: Allow data to be sent to your app via
Share buttons

Action: Reads or manipulates data to be
returned to the host app

Photo: Image editing and filter options

Document Provider: Send or receive document
content between applications

Today: New widget in the Today view of the built
in notification Center

Keyboards: Custom keyboard replacements for
built-in iOS keyboards

iOS IPC (App Extensions)

COPYRIGHT ©2018 MANICODE SECURITY 59

Share and Action extensions offer data filtering
techniques using NSExtensionActivationRule in
the apps Info.plist

iOS IPC (App Extensions)

§ NSExtensionActivationSupportAttachmentsWithMaxCount

§ NSExtensionActivationSupportsFileWithMaxCount

§ NSExtensionActivationSupportsWebURLWithMaxCount

§ NSExtensionActivationSupportsText

§ …

COPYRIGHT ©2018 MANICODE SECURITY

Attacking iOS Applications

60

COPYRIGHT ©2018 MANICODE SECURITY 61

iOS Attack Methodology

§Very little “security testing” can be
carried out on an iOS app these
days without using a jailbroken
application

§Source code review for internal
teams is recommended as well as
dynamic assessment

COPYRIGHT ©2018 MANICODE SECURITY 62

iOS Attack Methodology - Recon

§Reconnaissance helps us
understand the target better and
start mapping our attack surface

§We want to look for things like:
- Domain Names

- Hardcoded Credentials

- Administrative Backends

- Server Configuration

COPYRIGHT ©2018 MANICODE SECURITY 63

iOS Jailbreaking

§The sole purpose of jailbreaking
iOS devices is to disable
protections Apple puts in place

§A string of vulnerabilities and
exploits working together to
eventually give the operator root

§Tethered, semi-tethered,
untethered, etc.

§Becoming very complicated

COPYRIGHT ©2018 MANICODE SECURITY 64

iOS Static Analysis

§The preferred way to analyze an
application from an attackers
perspective

§Usually means having access to
original Xcode project files

§No reliable decompilers on the market
(unlike Android)

§Without source, we need to resort to
reverse engineering via Assembly
code

COPYRIGHT ©2018 MANICODE SECURITY 65

iOS Dynamic Analysis

§With access to a jailbroken device,
but not Xcode source, we can perform
dynamic analysis of an application

§Dynamic analysis consists of
instrumenting the runtime in order to
inject your own code into the
application

COPYRIGHT ©2018 MANICODE SECURITY 66

iOS Dynamic Analysis (Non-Rooted)

§We can still modify the runtime of an
app on a non-jailbroken device

§Objection handles runtime exploration
and repackaging

COPYRIGHT ©2018 MANICODE SECURITY

iOS – Insecure Data Storage

67

COPYRIGHT ©2018 MANICODE SECURITY 68

Insecure Data Storage SQLite

COPYRIGHT ©2018 MANICODE SECURITY 69

Insecure Data Storage SQLite

COPYRIGHT ©2018 MANICODE SECURITY 70

Insecure Data Storage SQLite

COPYRIGHT ©2018 MANICODE SECURITY 71

Insecure Data Storage SQLite

COPYRIGHT ©2018 MANICODE SECURITY 72

§ iOS creates snapshots of the application
running as it is exited to provide more
transparent transitions

§ Consider the need to display sensitive data on
a mobile app at all

§ A few ways to handle sensitive snapshots:

UIApplicationExitsOnSuspend – Kill app entirely
and not save snapshot

Change the view at the moment the app is
placed into the background and ignore the fake
image when app is brought back to foreground

Insecure Data Storage Snapshots

https://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html

COPYRIGHT ©2018 MANICODE SECURITY 73

§ iOS 10 introduced the Universal Clipboard
which opens up the attack surface to other
devices

§ New features also introduced to limit
pasteboard functionality

Insecure Data Storage Pasteboard

COPYRIGHT ©2018 MANICODE SECURITY

iOS Pasteboard Options

74

Pasteboard Item Flagged “Local Only”

Pasteboard with Expiration Date

COPYRIGHT ©2018 MANICODE SECURITY 75

Attack: Malicious keyboard extensions have the

ability to read every keystroke that a user enters

into your app

Different levels of data exfiltration or leakage could exist

(Privacy vs. Exploit)

Defense: Consider preventing the use of third-

party keyboards in your application if it collects

sensitive information.

Malware Custom Keyboard

COPYRIGHT ©2018 MANICODE SECURITY 76

Malware Custom Keyboard

COPYRIGHT ©2018 MANICODE SECURITY 77

iOS WebViews

COPYRIGHT ©2018 MANICODE SECURITY 78

Attack: XSS or other injection may be present in
an iOS WebView and may lead to file or system
access.

Defense: Ensure all WebView calls do not
execute with out proper input validation.

If possible, rely on Safari or Chrome to handle
WebView functionality. Turn of JavaScript if
possible.

iOS WebViews

COPYRIGHT ©2018 MANICODE SECURITY 79

§ Aims to protect against rogue CAs, compromised
CAs, and prying eyes

§ Will not protect against certain reverse
engineering techniques which can unpin, debug,
and repackage

§ Will not help if device is jailbroken / rooted

§ Makes my job as a pen tester that much more
difficult

§ Defense in depth mechanism

iOS Certificate Pinning

COPYRIGHT ©2018 MANICODE SECURITY

ANDROID SECURITY
The good, bad, and the ugly.

80

COPYRIGHT ©2018 MANICODE SECURITY 81

§ Massively popular alternative to iOS

§ Governed by the Open Handset Alliance,

led by Google

§ Unlike Apple, no end-to-end hardware

§ Large disparity of software and hardware

support

Makes securing Android devices very challenging

Android

COPYRIGHT ©2018 MANICODE SECURITY 82

COPYRIGHT ©2018 MANICODE SECURITY 83

Android

COPYRIGHT ©2018 MANICODE SECURITY

Android Stack

84

Android Applications

Java API Framework

Native C/C++ Libraries

Hardware Abstraction Layer

Android Runtime (ART)
Core Libraries

Linux Kernel

COPYRIGHT ©2018 MANICODE SECURITY 85

§ Apps written in Java (as a language not a
runtime) or Kotlin and compiled to Dalvik or
ART

Sandboxing enforces a unique UID and GID at install with
limited permissions

§ SELinux enforced in Android 5.0 and later

§ DEP and ASLR support with Android 4.0 +

§ Memory protection, bounds checking string
management, etc.

Android Operating System
Security

COPYRIGHT ©2018 MANICODE SECURITY 86

§ Developers sign their own applications self-

signed certificates

Used to ensure that subsequent installs cannot overwrite

prior applications

§ This does not validate the identity of the

developer

§ Applications are not vetted in the same fashion

as Apple apps prior to publication

Android Application Signing

and Distribution

COPYRIGHT ©2018 MANICODE SECURITY 87

Android Application Signing
and Distribution

§ 12+ “rip-off” apps booted from the Google Play
store

§ QR Barcode Scanner, Compass, Flashlight, etc.

§ Downloaded between 10,000 – 50,000 times

§ “One of those secrets included the creation of a
dex file that when executed plays a specific
YouTube video and generates ad revenue for
the video’s author. ”

§ “It’s notable that this dex file is not embedded in
the original app, but is downloaded at runtime.”

COPYRIGHT ©2018 MANICODE SECURITY 88

Android Application Signing
and Distribution

COPYRIGHT ©2018 MANICODE SECURITY 89

§ Apps use Android APIs for system interaction
and data access (similar to iOS)

§ Defined by developer in the
AndroidManifest.xml

§ User is prompted upon installation

§ In Android 6.0 Marshmallow, application will not
be granted any permission at installation time.
Instead, application has to ask user for a
permission one-by-one at runtime.

§ Can be very unclear why an app would need a
certain permission

Android Permissions and
Privileges

COPYRIGHT ©2018 MANICODE SECURITY 90

COPYRIGHT ©2018 MANICODE SECURITY 91

§Android uses Intents to perform IPC as
well as communication within the same
application

§Unlike iOS Extensions, Intents are
invoked from within the app directly

- Activities
- Services
- Content Providers
- Broadcast Receivers

Android Inter-Process
Communication

COPYRIGHT ©2018 MANICODE SECURITY

Anatomy of an Android Application

92

COPYRIGHT ©2018 MANICODE SECURITY 93

§Just a .zip file labeled as .apk

§The artifact that is uploaded to the Play
Store or sideloaded onto a device

§Can be extracted from a device

§Always signed by the developer

“On Google Play, application signing bridges the
trust Google has with the developer and the trust
the developer has with their application. Developers
know their application is provided, unmodified, to
the Android device; and developers can be held
accountable for behavior of their application.”

Android Package

https://source.android.com/security/apksigning/

https://source.android.com/security/apksigning/

COPYRIGHT ©2018 MANICODE SECURITY

APK Contents

94

AndroidManifest.xml

resources.arsc

classes.dex

Native C/C++ (.so files)

Resources Assets META-INF

COPYRIGHT ©2018 MANICODE SECURITY 95

§googleplay-api
§Android Debug Bridge (adb)

adb shell pm list packages
adb pull /data/app/yourapp.apk

§APKoptik
§Sketchy Browser Extensions

Retrieving the APK

COPYRIGHT ©2018 MANICODE SECURITY 96

§Lots of tooling out there to
help us with this
§apktool
§apkanalyzer
§aapt

…it’s just a .zip file

Extracting the APK

COPYRIGHT ©2018 MANICODE SECURITY

APK Contents

97

AndroidManifest.xml

resources.arsc

classes.dex

Native C/C++ (.so files)

Resources Assets META-INF

COPYRIGHT ©2018 MANICODE SECURITY 98

AndroidManifest.xml

§Where we define essential information

about our application

§App Name and Unique Identifier

§Describes components of the

application (activities, services,

broadcast receivers, etc.)

§Declares apps permissions

§Minimum Android API version the app

requires

§A curious hackers first point of interest

COPYRIGHT ©2018 MANICODE SECURITY 99

Android Manifest Best Practices
Debug Mode

§android:debuggable defines
whether the app can be
debugged or not

§What happens when this is set to
“true” in production?

COPYRIGHT ©2018 MANICODE SECURITY 100

Android Manifest Best Practices
External Storage

§Apps may request permission to
write data to external storage
mechanisms

§Ensure no sensitive data is being
written

COPYRIGHT ©2018 MANICODE SECURITY 101

Android Manifest Best Practices
Backups

§Defines whether an app can
automatically back itself up

§Requires debugging to be
enabled on device

COPYRIGHT ©2018 MANICODE SECURITY 102

Android Manifest Best Practices
Permissions

§Apps must request permission to
use sensitive features of the API

§Request only what your app
needs to run and nothing more

§Be explicit with permission
requests

COPYRIGHT ©2018 MANICODE SECURITY 103

Android Manifest Best Practices
Protection Level

§Three protection levels exist:
normal
dangerous
signature

§Apply the principal of least
privilege and only request
permissions that your app
needs to function.

COPYRIGHT ©2018 MANICODE SECURITY 104

”Normal” Permissions do
not require manual user
approval and are granted to
apps by default and cannot
be revoked.

COPYRIGHT ©2018 MANICODE SECURITY 105

”Dangerous”
Permissions are
granted in groups
and require end
user approval.

COPYRIGHT ©2018 MANICODE SECURITY 106

Android Manifest Best Practices
Components

§Each Android app consists of
a collection of components
that work both together, and
potentially with components
of other apps, in order to
provide the application’s
functionality.

§Sounds great for usability but
what about security?

COPYRIGHT ©2018 MANICODE SECURITY

Android Components: Activities

107

Components that provide a user
interface screen and correspond to
activities that the user might perform

COPYRIGHT ©2018 MANICODE SECURITY

Android Components: Services

108

Components that perform potentially long-

running tasks that operate in the background

without a user interface, e.g. downloading a

file, playing music, or synchronizing email

with a server.

COPYRIGHT ©2018 MANICODE SECURITY

Android Components: Public or Private

109

A public component can be accessed by
components in other apps, e.g. a public
Service or Activity can be started by another
app

android:exported=true

COPYRIGHT ©2018 MANICODE SECURITY

Android Components: Public or Private

110

A private component can only be accessed
by other components within the same app

android:exported=false

COPYRIGHT ©2018 MANICODE SECURITY 111

Android Manifest Best Practices
Component Permissions

§Always explicitly set the
android:exported value in the
AndroidManifest.xml config to
have the visibility needed and
nothing more.

§The default value is version-
dependent and may change in the
future.

COPYRIGHT ©2018 MANICODE SECURITY

Android Intent Overview

112

Implicit Intents inform the Android OS that it will need an

app that is able to handle the intent’s action when it starts.

Intent

App App App App

Intent-filter Intent-filter Intent-filter

Intent captureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

COPYRIGHT ©2018 MANICODE SECURITY

Android Intent Overview

113

Explicit Intents specify which component to start by fully-
qualified class name

Intent

Activity Activity Activity Activity

Intent myIntent = new Intent(myContext, com.example.testapps.test1.mainActivity.class);

COPYRIGHT ©2018 MANICODE SECURITY 114

Android Manifest Best Practices
Intents

§Use explicit intents when possible

§If implicit intents must be used,
require appropriate permissions
of the caller, validate the origin,
action, and data of the incoming
intent

§If receivers must be exposed
publicly, require appropriate
permissions and security checks

COPYRIGHT ©2018 MANICODE SECURITY

APK Contents

115

AndroidManifest.xml

resources.arsc

classes.dex

Native C/C++ (.so files)

Resources Assets META-INF

COPYRIGHT ©2018 MANICODE SECURITY 116

Dalvik Executable

§Register-based Bytecode
§Executed by Dalvik / ART
Runtime
§Compiled to native code that
runs on the Android device

COPYRIGHT ©2018 MANICODE SECURITY

APK Contents

117

AndroidManifest.xml

resources.arsc

classes.dex

Native C/C++ (.so files)

Resources Assets META-INF

COPYRIGHT ©2018 MANICODE SECURITY 118

Native Code

§“Shared Object” files are
compiles libraries from C or
C++ source code

§Can be disassembled but you
are entering a world of
complexity

§Still not a safe place for
hardcoded credentials or
sensitive data

COPYRIGHT ©2018 MANICODE SECURITY

Android Attack Surface

119

COPYRIGHT ©2018 MANICODE SECURITY

Dex to Smali

120

§Smali can be thought of as “intermediate bytecode”
§Easier to read by humans than Dex
§Can still be modified and recompiled into an APK

COPYRIGHT ©2018 MANICODE SECURITY

Dex to Smali

121

§APKTool is popular disassembler for DEX

§ https://ibotpeaches.github.io/Apktool

§ Transforms Dalvik Executable files (DEX) to Smali
Bytecode

§Able to modify Smali and rebuild back to running app

https://ibotpeaches.github.io/Apktool

COPYRIGHT ©2018 MANICODE SECURITY

dex2jar

122

§ dex2jar is popular decompiler for DEX files

§ https://github.com/pxb1988/dex2jar

§Converts Dalvik Bytecode (DEX) to Java source code (jar)

§One way operation and cannot be re-compiled to DEX

https://github.com/pxb1988/dex2jar

COPYRIGHT ©2018 MANICODE SECURITY 123

Option 1: Include Secrets in strings.xml

Option 2: Include Secrets in Source Code

Option 3: Include Secrets in Source Code and
do not Check in to git

Option 4: Include Secrets in Build Config

Option 5: Obfuscate with Proguard / DexGuard

Option 6: Obfuscate using moar Encryption

Option 7: Hide in Native C/C++

Option 8: Store in Keystore

Option 9: Keep Secrets on the Server

Option 10: Give Up

Secrets Storage Woes!

COPYRIGHT ©2018 MANICODE SECURITY 124

Android Data Storage

§Data may be stored in a number of
locations. Build your threat model
appropriately.

• SQLite Databases
• Log Files
• Shared_prefs
• XML Data Stores or Manifest Files
• Binary data stores
• Cookie stores
• SD Card
• Cloud synced

COPYRIGHT ©2018 MANICODE SECURITY 125

Android Data Storage

Consider the need to store

sensitive data on the device.

As a developer, you should prepare for the

worst case scenario (outdated devices, physical

compromise, malware, spying, etc.)

COPYRIGHT ©2018 MANICODE SECURITY

Android Permission Re-delegation

§ Permission re-delegation occurs when your application exposes
a component that may be called by other applications

§ If that API can be invoked by lesser-privileged applications, permission
re-delegation occurs and these applications may abuse your
application's privileges.

126

App

App

1. Access
GPS?

2. Access
GPS?

GPS Control

3. Access
Granted

4. Access
Granted

Public component

COPYRIGHT ©2018 MANICODE SECURITY

Android Permission Re-delegation

For example, your application has the permission to send SMS

messages (which costs the user money).

§ If your application exposes a public interface that accepts some data

from outside the application and uses it to construct and send an SMS

message, a malicious application without the SMS privilege can

leverage your application to send SMS messages

§ This circumvents the permissions model and costs the user money

against their will.

127

COPYRIGHT ©2018 MANICODE SECURITY 128

Attack: A victim application exposes a component

that is abused by a malicious application installed

on the device

Defense: First, avoid exposing any data or

functionality that require dangerous permissions over

IPC channels unless explicitly needed. If this cannot

be avoided, be sure to follow these guidelines:

– Limit who the data/functionality is exposed to

– Require the caller to have the same permission that the

exposed component must have

– Validate any data received from intents to ensure that no

malicious actions are taking place

– Be very explicit about the permissions your application

needs to operate and do not overly permission the

application

Android Permission Re-delegation

COPYRIGHT ©2018 MANICODE SECURITY

Android Permission Re-delegation

129

Vulnerable Code Snippet

COPYRIGHT ©2018 MANICODE SECURITY

Android Testing IPC With Drozer

130

• Drozer is an Android penetration testing framework

• Allows operators to assume the role of an Android app on a device

and interact with other applications as well as the Android IPC

mechanism

• Server-Agent Architecture

COPYRIGHT ©2018 MANICODE SECURITY 131

§WebViews offer many benefits for
developers:

- Reuse of existing code

- Portability

- Rapid patching without rolling out new app

- Same old technologies we know and love

- No data shared between WebView and
mobile browser

Android Attacking WebViews

COPYRIGHT ©2018 MANICODE SECURITY 132

§When misconfigured, WebViews may
be vulnerable to a variety of attacks

- Cross-Site Scripting
- Man-in-the-Middle
- SSL Stripping
- Loading Malicious Links or HTML
- CSRF via Intents

Android Attacking WebViews

COPYRIGHT ©2018 MANICODE SECURITY 133

setAllowUniversalAccessFromFile URLs(true)

“Sets whether JavaScript running in the context of a file
scheme URL should be allowed to access content from
any origin. This includes access to content from other
file scheme URLs. ”

Android Attacking WebViews

COPYRIGHT ©2018 MANICODE SECURITY 134

When possible, ensure all WebViews explicitly disable
access to files using setAllowFileAccess(false) and
setAllowUniversalAccessFromFile URLs(false)

Ensure that all external external resources loaded by
a WebView are using TLS and the app has a correct TLS
configuration

Android Protecting WebViews

COPYRIGHT ©2018 MANICODE SECURITY 135

Hack Yourself.

Loads of resources out there to dive deep into
mobile application security!
• OWASP GoatDroid

• OWASP Mobile Security Project

• Damn Vulnerable iOS Application (DVIA)

JIMMY MESTA Secure Coding Instructor www.manicode.com

It's been a pleasure.
jmesta@manicode.com

